EPJ Plus Highlight - Remote sensing for cosmic dust and other celestial bodies

How to bring an asteroid back nearer to lunar orbit. Credits: Keck Institute for Space Studies report

Study reviews the state-of-the-art in polarimetry as a remote sensing technique for the small bodies in our solar system

The solar system is full of various small bodies such as planetary moons, main belt asteroids, Jupiter Trojans, Centaurs, trans-Neptunian objects and comets. To study them, scientists typically analyse the radiation they reflect, which is referred to as polarimetry. Scientists not only focus on the intensity of the scattered radiation, but also on how photons oscillate in the plane perpendicular to their direction of propagation - that is, their polarisation. Combining these two aspects yields significantly better descriptions than data obtained from the intensity alone. In a paper published in EPJ Plus, Stefano Bagnulo from Armagh Observatory and Planetarium in Northern Ireland, UK, and colleagues review the state-of-the-art in polarimetry for studying the small bodies in our solar system.

Combined with other observational techniques, such as thermal radiometry and visible photometry, polarimetry may be used as a remote sensing technique to measure asteroids' size, to reveal the composition and size variation of dust in comets or of aerosols in planetary atmospheres, to study the surface structure of asteroids, or even to detect extra-terrestrial biomarkers.

So how does polarimetry work? The way light is polarised depends on the nature of the scattering surface, and the measured polarisation changes when the object is observed from different angles. Imagine that radiation hits an electron on a surface. That electron begins oscillating, and becomes more inclined to move in a direction parallel to the surface than to penetrate it. Therefore, the reflected light presents an excess of photons oscillating in the direction parallel to the surface, making the reflected light polarised. In this way, measuring polarisation can yield pertinent information on objects in the solar system. By combining it with other techniques, scientists can make important advances in the physical characterisation of these small bodies.

This was our first experience of publishing with EPJ Web of Conferences. We contacted the publisher in the middle of September, just one month prior to the Conference, but everything went through smoothly. We have had published MNPS Proceedings with different publishers in the past, and would like to tell that the EPJ Web of Conferences team was probably the best, very quick, helpful and interactive. Typically, we were getting responses from EPJ Web of Conferences team within less than an hour and have had help at every production stage.
We are very thankful to Solange Guenot, Web of Conferences Publishing Editor, and Isabelle Houlbert, Web of Conferences Production Editor, for their support. These ladies are top-level professionals, who made a great contribution to the success of this issue. We are fully satisfied with the publication of the Conference Proceedings and are looking forward to further cooperation. The publication was very fast, easy and of high quality. My colleagues and I strongly recommend EPJ Web of Conferences to anyone, who is interested in quick high-quality publication of conference proceedings.

On behalf of the Organizing and Program Committees and Editorial Team of MNPS-2019, Dr. Alexey B. Nadykto, Moscow State Technological University “STANKIN”, Moscow, Russia. EPJ Web of Conferences vol. 224 (2019)

ISSN: 2100-014X (Electronic Edition)

© EDP Sciences