EPJ Plus Highlight - Turbulence theory closer to high-energy physics than previously thought

Higgs event at CERN Credit: Lucas Taylor / CERN [CCBY-SA 3.0]

A new research paper finds the high-energy physics concept of 'un-naturalness' may be applicable to the study of turbulence or that of strongly correlated systems of elementary particles

Many scientists have been disappointed that no new elementary particles have been discovered at CERN's Large Hadron Collider in the wake of the Higgs boson discovery in 2012. The no-show of elusive particles that had previously been predicted by theory is only one example of a 'hole' that has recently appeared in the concept of Naturalness in theoretical physics. In simple terms, the concept states that physical parameters should depend roughly equally on all the terms used to calculate them, in terms of proportion. Sauro Succi, a theoretical physicist at the Fondazione Istituto Italiano di Tecnologia in Rome, Italy, has now published an intriguing essay in the journal EPJ Plus in which he argues that several common natural phenomena do not operate under ‘Naturalness' at all. Rather, they can only be explained using parameters with widely separated numerical values.

In his paper, Succi applies the concept of 'un-naturalness' to two complex areas of theoretical physics: the turbulence of fluid flows, and strongly correlated systems of the elementary particles known as fermions. Only the first of these two topics relates to his main research field: computer simulations of flowing matter below the macroscale and above the microscopic scale. He describes how these theories have similarities that are also shared with those of 'un-naturalness' in high-energy physics.

Currently, this work is mostly theoretical, but Succi maintains that it can be used in the design of new materials for engineering and biomedical applications. In the long term, simulations based on these principles may even permit the computer simulation of complete biological organelles, such as the Golgi apparatus. Succi pays tribute to a CERN colleague who sparked his interest in aspects of naturalness and complexity in theoretical physics far removed from his main research area.

S. Succi (2019), Of Naturalness and Complexity, Eur. Phys. J. Plus 134:97, DOI 10.1140/epjp/i2019-12576-3

This was our first experience of publishing with EPJ Web of Conferences. We contacted the publisher in the middle of September, just one month prior to the Conference, but everything went through smoothly. We have had published MNPS Proceedings with different publishers in the past, and would like to tell that the EPJ Web of Conferences team was probably the best, very quick, helpful and interactive. Typically, we were getting responses from EPJ Web of Conferences team within less than an hour and have had help at every production stage.
We are very thankful to Solange Guenot, Web of Conferences Publishing Editor, and Isabelle Houlbert, Web of Conferences Production Editor, for their support. These ladies are top-level professionals, who made a great contribution to the success of this issue. We are fully satisfied with the publication of the Conference Proceedings and are looking forward to further cooperation. The publication was very fast, easy and of high quality. My colleagues and I strongly recommend EPJ Web of Conferences to anyone, who is interested in quick high-quality publication of conference proceedings.

On behalf of the Organizing and Program Committees and Editorial Team of MNPS-2019, Dr. Alexey B. Nadykto, Moscow State Technological University “STANKIN”, Moscow, Russia. EPJ Web of Conferences vol. 224 (2019)

ISSN: 2100-014X (Electronic Edition)

© EDP Sciences