EPJ Plus Highlight - Tackling large data sets and many parameter problems in particle physics

The Pandemonium tool links together six clusters of data and provides a graphical interpretation.

A new tool to break down and segment large data set problems and problems with many parameters in particle physics could have a wide range of applications.

One of the major challenges in particle physics is how to interpret large data sets that consist of many different observables in the context of models with different parameters.

A new paper published in EPJ Plus, authored by Ursula Laa from the Institute of Statistics at BOKU University, Vienna, and German Valencia from the School of Physics and Astronomy, Monash University, Clayton, Australia, looks at the simplification of large data set and many parameter problems using tools to split large parameter spaces into a small number of regions.

“We applied our tools to the so-called B-anomaly problem. In this problem there is a large number of experimental results and a theory that predicts them in terms of several parameters,” Laa says. “The problem has received much attention because the preferred parameters to explain the observations do not correspond to those predicted by the standard model of particle physics, and as such the results would imply new physics.”

Valencia continues by explaining the paper shows how the Pandemonium tool can provide an interactive graphical way to study the connections between characteristics in the observations and regions of parameter space.

“In the B-anomaly problem, for example, we can clearly visualise the tension between two important observables that have been singled out in the past,” Valencia says. “We can also see which improved measurements would be best to address that tension.

“This can be most helpful in prioritising future experiments to address unresolved questions.”

Laa elaborates by explaining that the methods developed and used by the duo are applicable to many other problems, in particular for models and observables that are less well understood than the applications discussed in the paper, such as multi Higgs models.

“A challenge is the visualization of multidimensional parameter spaces, the current interface only allows the user to visualise high dimensional data spaces interactively,” Laa concludes. “The challenge is to automate this, which will be addressed in future work, using techniques from dimension reduction.”

U. Laa, G. Valencia. A clustering tool to partition parameter space — application to the B anomalies. Eur. Phys. J. Plus 137, 145 (2021).

This was our first experience of publishing with EPJ Web of Conferences. We contacted the publisher in the middle of September, just one month prior to the Conference, but everything went through smoothly. We have had published MNPS Proceedings with different publishers in the past, and would like to tell that the EPJ Web of Conferences team was probably the best, very quick, helpful and interactive. Typically, we were getting responses from EPJ Web of Conferences team within less than an hour and have had help at every production stage.
We are very thankful to Solange Guenot, Web of Conferences Publishing Editor, and Isabelle Houlbert, Web of Conferences Production Editor, for their support. These ladies are top-level professionals, who made a great contribution to the success of this issue. We are fully satisfied with the publication of the Conference Proceedings and are looking forward to further cooperation. The publication was very fast, easy and of high quality. My colleagues and I strongly recommend EPJ Web of Conferences to anyone, who is interested in quick high-quality publication of conference proceedings.

On behalf of the Organizing and Program Committees and Editorial Team of MNPS-2019, Dr. Alexey B. Nadykto, Moscow State Technological University “STANKIN”, Moscow, Russia. EPJ Web of Conferences vol. 224 (2019)

ISSN: 2100-014X (Electronic Edition)

© EDP Sciences