Proceedings

EPJ Plus Highlight - Characterising limestone rocks with Raman spectroscopy

Image by PublicDomainPictures from Pixabay

Research published in EPJ Plus shows that it is possible to classify rocks according to the size of the particles they contain during quarrying, using a portable Raman spectrometer.

The nature and potential uses of a sedimentary rock depends on the size of the particles or grains that they are composed from, and particle sizing is an important part of rock classification. A group of researchers led by Iacopo Osticioli of Istituto di Fisica Applicata “N. Carrara”, Florence, Italy has shown that it is possible to size particles and identify rock samples rapidly and accurately while they are being quarried using a portable Raman spectrometer. This work has now been published in the journal EPJ Plus.

Limestone is a sedimentary, calcareous rock - that is, one made up principally of calcite and other minority minerals with variable grain dimensions. Each type produces a different quality of quicklime for specific industrial applications. It can be classified according to the sizes of the grains it is composed of, and each type has a different range of industrial uses.

Previous research has shown that the intensity of Raman spectral signals, and of the background, will depend on the particle or granule sizes of the sample tested. Osticioli and his co-workers set out to quantise this effect and to use the information to see whether it would be possible to classify rocks in situ, in a quarry, using a portable instrument.

They examined a set of rock samples that had been classified by experts, rock pellets and crystalline calcite powder with the portable spectrometer, it showed that there was a clear correlation between Raman signal and particle size, and obtained a calibration curve. “This demonstrates that this technique can provide trustworthy information about mineral fabric,” says Osticioli. The apparatus is portable and small enough to be used during quarrying, and it produces results rapidly.

Osticioli and his team now intend to refine the calibration curve to make size assessment, and therefore mineral particle-size correlation, more precise. “And the technique can be extended to other minerals that are quarried for other industrial purposes,” he concludes.

This was our first experience of publishing with EPJ Web of Conferences. We contacted the publisher in the middle of September, just one month prior to the Conference, but everything went through smoothly. We have had published MNPS Proceedings with different publishers in the past, and would like to tell that the EPJ Web of Conferences team was probably the best, very quick, helpful and interactive. Typically, we were getting responses from EPJ Web of Conferences team within less than an hour and have had help at every production stage.
We are very thankful to Solange Guenot, Web of Conferences Publishing Editor, and Isabelle Houlbert, Web of Conferences Production Editor, for their support. These ladies are top-level professionals, who made a great contribution to the success of this issue. We are fully satisfied with the publication of the Conference Proceedings and are looking forward to further cooperation. The publication was very fast, easy and of high quality. My colleagues and I strongly recommend EPJ Web of Conferences to anyone, who is interested in quick high-quality publication of conference proceedings.

On behalf of the Organizing and Program Committees and Editorial Team of MNPS-2019, Dr. Alexey B. Nadykto, Moscow State Technological University “STANKIN”, Moscow, Russia. EPJ Web of Conferences vol. 224 (2019)

ISSN: 2100-014X (Electronic Edition)

© EDP Sciences