EPJ Plus Highlight - Assessing the impact of loss mechanisms in solar cell candidate

Diagrams chart the impact of interface recombination and absorber minority carrier lifetime on efficiency and open-circuit voltage of a solar cell.

The superconductor antimony sulfide selenide is a potential candidate for solar materials, but this depends on understanding how to boost its efficiency.

As climate change continues to present itself as the most pressing threat facing our planet, researchers push to find efficient and clean alternatives to fossil fuels. Foremost among this research is harnessing free energy from the sun. Doing this efficiently requires advanced knowledge of the qualities of materials used in the construction of solar cells.

In a new paper published in EPJ Plus, Maykel Courel from the Centro Universitario de los Valles (CUValles), Universidad de Guadalajara, Mexico, and co-authors, look at the limitations of the material antimony sulfide selenide, which has emerged as a potential candidate for solar cell fabrication.

A semiconductor, antimony sulfide selenide has been intensively studied by researchers working on thin-film solar cells, due to the fact that direct optical transitions result in the material possessing a high absorption coefficient. The material’s application to devices that convert light into electricity using semiconducting materials is still in its early days, however.

Currently, the efficiency of this material is at a maximum of around 10 percent, well below 29 percent, the maximum efficiency expected for this type of technology.

The researchers set about testing the limiting factors that are affecting this efficiency, focusing on the effect of loss mechanisms on antimony sulfide selenide cells using an analytical model.

The team found that for typical parameters chosen for their simulations, electron-hole recombination in a substrate — known as bulk recombination — and interface recombination which happens when two semiconductor bandgaps have a staggered shape, are the main problems that degrade the device performance.

They suggest that materials scientists working on either the reduction in defects at interface or defects at bulk in antimony sulfide selenide devices would not be able to obtain efficiencies greater than 10 percent. On the other hand, with a carrier lifetime longer than 100 nanoseconds with a recombination speed lower than 1 centimetre per second efficiencies for such technology could top 14 percent.

This was our first experience of publishing with EPJ Web of Conferences. We contacted the publisher in the middle of September, just one month prior to the Conference, but everything went through smoothly. We have had published MNPS Proceedings with different publishers in the past, and would like to tell that the EPJ Web of Conferences team was probably the best, very quick, helpful and interactive. Typically, we were getting responses from EPJ Web of Conferences team within less than an hour and have had help at every production stage.
We are very thankful to Solange Guenot, Web of Conferences Publishing Editor, and Isabelle Houlbert, Web of Conferences Production Editor, for their support. These ladies are top-level professionals, who made a great contribution to the success of this issue. We are fully satisfied with the publication of the Conference Proceedings and are looking forward to further cooperation. The publication was very fast, easy and of high quality. My colleagues and I strongly recommend EPJ Web of Conferences to anyone, who is interested in quick high-quality publication of conference proceedings.

On behalf of the Organizing and Program Committees and Editorial Team of MNPS-2019, Dr. Alexey B. Nadykto, Moscow State Technological University “STANKIN”, Moscow, Russia. EPJ Web of Conferences vol. 224 (2019)

ISSN: 2100-014X (Electronic Edition)

© EDP Sciences