EPJ Plus Highlight - Modelling the use of Beta Radiation in cancer treatment

An illustration of beta decay proceeding against the backdrop of a Monte Carlo simulation. Credit: Robert Lea

New research pits the simulation of beta radiation doses in tumour treatment against an analytical method.

Treating superficial skin tumours especially when they are located above cartilage or bone with beta radiation can help protect sensitive structures during the delivery of treatment.

The use of short-range beta radiation in cancer treatment is not without its disadvantages, however, especially when it comes to the measurement of radiation exposure — dosimetry. When experimental dosimetry is not feasible, researchers use simulations and calculations to study the interaction of the ionizing radiation with matter and estimate the radiation dose delivered to a target organ.

A new paper published in EPJ Plus and authored by Eduardo De Paiva, from the Division of Medical Physics at the Institute of Radiation Protection and Dosimetry, Rio de Janeiro, Brazil, and his colleagues, pits the gold standard of simulation techniques — Monte Carlo (MC) simulation — against an alternative analytic method, the Loevinger formula.

“We measured the dose of a treatment applicator using mathematical techniques — a simple technique, no experiment needed and no practical challenges,” De Paiva says. “The comparison of MC simulation and Loevinger formula on the setup of our research was the novelty of our study.”

Nonexperimental dosimetry techniques like MC simulation are advantageous for their ability to handle different geometries and materials, but MC simulations require heavy computation and this can impede their implementation.

Analytic methods are another set of techniques for dosimetry of beta radiation that can produce results faster than MC methods. Thus far, these methods have been less favoured because they are associated with lower accuracy.

The team used MC simulation and analytical calculation — the Loevinger formula — for dosimetry of radiation dose from a multiwell skin brachytherapy applicator with two beta sources. The results of the two approaches were compared to see how accurate the analytical method is.

“The Loevinger formula, which is a quick method for dosimetry showed a good agreement with gold standard Monte Carlo methods,” Paiva concluded. “Thus, the Loevinger formula can be used, as the basis of a dosimetry software, for straightforward dosimetry of beta sources in simple geometries.”

This was our first experience of publishing with EPJ Web of Conferences. We contacted the publisher in the middle of September, just one month prior to the Conference, but everything went through smoothly. We have had published MNPS Proceedings with different publishers in the past, and would like to tell that the EPJ Web of Conferences team was probably the best, very quick, helpful and interactive. Typically, we were getting responses from EPJ Web of Conferences team within less than an hour and have had help at every production stage.
We are very thankful to Solange Guenot, Web of Conferences Publishing Editor, and Isabelle Houlbert, Web of Conferences Production Editor, for their support. These ladies are top-level professionals, who made a great contribution to the success of this issue. We are fully satisfied with the publication of the Conference Proceedings and are looking forward to further cooperation. The publication was very fast, easy and of high quality. My colleagues and I strongly recommend EPJ Web of Conferences to anyone, who is interested in quick high-quality publication of conference proceedings.

On behalf of the Organizing and Program Committees and Editorial Team of MNPS-2019, Dr. Alexey B. Nadykto, Moscow State Technological University “STANKIN”, Moscow, Russia. EPJ Web of Conferences vol. 224 (2019)

ISSN: 2100-014X (Electronic Edition)

© EDP Sciences