Proceedings

EPJ Plus - The twin paradox in a cosmological context

The twin paradox has been a source of debate since it was discovered by Einstein. It can be analytically verified assuming the existence of global nonrotating inertial frames.

The natural nonrotating frame and its identification with "fixed stars" is an aspect of Mach's Principle, which holds that the totality of matter in the universe determines the inertial frames.

Ø. Grøn and Braeck first note that the experiment by Hafele and Keating (1972), who flew atomic clocks eastward and westward around the Earth in commercial aircraft, also shows agreement with the expected result, assuming an inertial frame which is nonrotating with respect to "fixed stars". The authors then show that in the case of two observers in an otherwise empty universe (i.e., without "fixed stars") moving at different speeds on a circular path yield different twin paradox results, depending on whether one or the other – or neither – observer is assumed to be at rest.

The authors ultimately take a fresh look at the work of Brill and Cohen, who studied the geometry inside a massive rotating shell, and conclude that in the black hole limit, such a mass distribution will drag the frames around at its own rotation rate.

Taken together, and given the entire universe closely satisfying the black hole condition, this paper lends further support to the Mach Principle.

The twin paradox in a cosmological context
Ø. Grøn and S. Braeck, Eur. Phys. J. Plus (2011) 126: 79, DOI: 10.1140/epjp/i2011-11079-7]

I choose EPJ Web of Conferences for our proceedings, following the suggestion of a close colleague. As it was anticipated to me, I found the EPJ Web of Conferences services highly professional and exceptionally efficient. The proceedings were nicely edited, published online and printed in the shortest time I could imagine, providing us continuous support and satisfying all our requirements. I strongly recommend EPJ Web of Conferences to any editor.

Dr. Enricco Bozzo, ISDC - Science data center for Astrophysics, Switzerland
Co-editor EPJ Web of Conferences vol. 64, 2014

ISSN: 2100-014X (Electronic Edition)

© EDP Sciences