Proceedings

EPJ E Colloquium: Self-consistent field theory of multicomponent wormlike-copolymer melts

A linear, a 3-arm star, and a sidechain copolymer segment.

The self-consistent field theory (FCFT) is a convenient theoretical tool to describe the ordered structures of copolymer melts. It supports the current understanding of many polymeric systems. In a new EPJ E Colloquium Ying Jiang and colleagues showcase the versatility and power of the wormlike-chain formalism for calculating the microphase-separated crystallographic structures of multi-component wormlike polymers.

Read more...

EPJ E Review - Watching crystals grow

Ice nucleus forming in supercooled liquid water
© Philipp Geiger

Crystallization, a typical self-organization process during which a disordered state spontaneously transforms into an ordered one, a crystal, usually proceeds by nucleation and growth. In the initial stages of the transformation, a localized nucleus of the new phase forms due to a random fluctuation. Most of these small nuclei disappear after a short time, but in some rare cases a crystalline embryo may reach a critical size, after which further growth becomes thermodynamically favorable and the entire system is converted into the new phase.

In this EPJ E review paper, Jungblut and Dellago discuss several theoretical concepts and computational methods to better understand crystallization. More specifically, they address the rare event problem arising in the simulation of nucleation processes, and explain how to calculate nucleation rates accurately. Particular emphasis is placed on discussing statistical tools to analyze crystallization trajectories and identify the transition mechanism.

Read more...

EPJ E Highlight - Asymmetrical magnetic microbeads transform into micro-robots

alt
Transformation of particle clusters while exposed to an oscillating external magnetic field.

Thanks to the ordering effects of two-faced magnetic beads, they can be turned into useful tools controlled by a changing external magnetic field

Janus was a Roman god with two distinct faces. Thousands of years later, he inspired material scientists working on asymmetrical microscopic spheres - with both a magnetic and a non-magnetic half - called Janus particles. Instead of behaving like normal magnetic beads, with opposite poles attracting, Janus particle assemblies look as if poles of the same type attract each other. A new study reveals that the dynamics of such assemblies can be predicted by modelling the interaction of only two particles and simply taking into account their magnetic asymmetry. These findings were recently published in EPJ E by Gabi Steinbach from the Chemnitz University of Technology, Germany, and colleagues at the Helmholtz-Zentrum Dresden-Rossendorf. It is part of a topical issue entitled "Nonequilibrium Collective Dynamics in Condensed and Biological Matter." The observed effects were exploited in a lab-on-a-chip application in which microscopic systems perform tasks in response to a changing external magnetic field.

Read more...

Regine von Klitzing wins the 2016 EPJE Pierre-Gilles de Gennes Lecture Prize

Regine von Klitzing wins the 2016 EPJE Pierre-Gilles de Gennes Lecture Prize.
Regine von Klitzing

The EPJE editors are pleased to announce that this year’s edition of the EPJE Pierre-Gilles de Gennes Lecture Prize goes to German physicist Regine von Klitzing. Von Klitzing was nominated for her important contributions to polymer physics, particularly concerning the structure of polyelectrolyte assemblies and functionalized/responsive microgels. The EPJE Pierre-Gilles de Gennes lecture will be delivered by von Klitzing in Grenoble, France, during the 4th International Soft Matter Conference which takes place from 12 to 16 September 2016.

Read more...

EPJ E interview – Daan Frenkel. Simulating soft matter through the lens of statistical mechanics

© Daan Frenkel

Daan Frenkel has been awarded the most important prize in the field of statistical mechanics, the 2016 Boltzmann Medal. The award recognises Frenkel’s seminal contributions to the statistical-mechanical understanding of the kinetics, self-assembly and phase behaviour of soft matter. The honour recognises Frenkel’s highly creative large-scale simulations of soft matter capable of explaining the self-assembly of complex macromolecular systems, colloidal and biomolecular systems.
Frenkel is Professor of Theoretical Chemistry at the University of Cambridge, UK and has been Editor in Chief of EPJ E between 2010 and 2014. In this interview with Sabine Louet, Frenkel gives his views on statistical physics, which has become more relevant than ever for interdisciplinary research. He also offers some pearls of wisdom for the next generation Statistical Mechanics experts. The full interview is published in the June issue of EPJE.

Read more...

EPJ E interview – Yves Pomeau. The universality of statistical physics interpretation is ever more obvious

During the StatPhys Conference on 20th July 2016 in Lyon, France, Yves Pomeau and Daan Frenkel will be awarded the most important prize in the field of Statistical Mechanics: the 2016 Boltzmann Medal. The award recognizes Pomeau’s key contributions to the Statistical Physics of non-equilibrium phenomena in general. And, in particular, for developing our modern understanding of fluid mechanics, instabilities, pattern formation and chaos.
Pomeau, who is an Editor for the European Physical Journal Special Topics, is recognised as an outstanding theorist bridging disciplines from applied mathematics to statistical physics with a profound impact on the neighbouring fields of turbulence and mechanics. In an interview with Sabine Louet, published in EPJ E, Pomeau shares his views and tells how he experienced the rise of Statistical Mechanics in the past few decades. He also touches upon the need to provide funding to people who have the rare ability to discover new things and ideas, and not just those who are good at filling in grant application forms. The full interview is published in the June issue of EPJE.

Read more...

EPJ E Highlight - Versatile method yields synthetic biology building blocks

alt
Fluorescence microscopy image of polymersomes, taken 3 days after production.

New high-throughput method to produce both liposomes and polymersomes on the same microfluidic chip

Synthetic biology involves creating artificial replica that mimic the building blocks of living systems. It aims at recreating biological phenomena in the laboratory following a bottom-up approach. Today scientists routinely create micro-compartments, so called vesicles, such as liposomes and polymersomes. Their membranes can host biochemical processes and are made of self-assembled lipids or a particular type of polymers, called block copolymers, respectively. In a new study, researchers have developed a high-throughput method--based on an approach known as microfluidics--for creating stable vesicles of controlled size. The method is novel in that it works for both liposomes and polymersomes, without having to change the design of the microfluidic device or the combination of liquids. Julien Petit from the Max Planck Institute for Dynamics and Self-Organisation (MPIDS) in Göttingen, Germany and colleagues recently published these findings in EPJ E.

Read more...

EPJ E Colloquium: nanoparticles, nanorods and nanosheets at fluid interfaces

pH-induced, SWCNT segregation transition

In this EPJ E Review, Toor, Feng and Russel present many examples of self-assembly of nanoscale materials (both synthetic and biological) such as nanoparticles, nanorods and nanosheets at liquid/liquid interfaces. For biological nanoparticles, the nanoparticle assembly at fluid interfaces provide a simple route for directing nanoparticles into 2-D or 3-D constructs with hierarchical ordering.

Read more...

EPJ E Highlight - Travelling wave drives magnetic particles

alt
Optical microscope images separated by 6.63 s showing the formation of chains between only the large particles starting from an initially random mixture of two particles sizes.

New method for selectively controlling the motion of multiple sized microspheres suspended in water

As our technology downsizes, scientists often operate in microscopic-scale jungles, where modern-day explorers develop new methods for transporting microscopic objects of different sizes across non uniform environments, without losing them. Now, Pietro Tierno and Arthur Straube from the University of Barcelona, Spain, have developed a new method for selectively controlling, via a change in magnetic field, the aggregation or disaggregation of magnetically interacting particles of two distinct sizes in suspension in a liquid. Previous studies only focused on one particle size. These results, just published in EPJ E, show that it is possible to build long chains of large particles suspended in a liquid, forming channels that drive the small particles to move along. This could be helpful, for example, when sorting magnetic beads by size, separating biological or chemical entities in lab-on-a-chip devices or transporting biological species to analyse them.

Read more...

EPJ E Highlight - Tumble-proof cargo transporter in biological cells

alt
The average number density field of particles in the vicinity of the motor

New model shows how collective transport by synthetic nanomotors along biopolymer filaments can be effectively directed

Ever wondered how a molecular nanomotor works when repairing DNA or transporting material such as organelles in the cell? Typically, nanomotors move along biopolymer filaments to go about their duties in the cell. To do so, they use the energy of chemical reactions derived from their surroundings to propel themselves. In a new study published in EPJ E, Mu-Jie Huang and Raymond Kapral from the University of Toronto in Ontario, Canada show that small synthetic motors can attach to polymeric filaments and - unlike what previous studies showed - move along without changing either their shape or the direction in which they set out to move. This makes it possible to effectively deliver the substances they transport, such as anti-cancer drugs or anti-pollutants.

Read more...

It has really been a pleasure to work with […] EPJ staff members on the NS160 proceedings. We have enjoyed the very professional procedures and the short response times at all stages, starting from the first quotation to the final products, i.e. the open access internet version as well as the hard cover NS160 book. Thus, we will certainly consider EPJ Web of Conferences in the future, and can for sure recommend EPJ Web Conf to all our colleagues.

Dirk Rudolph, Lund University, Sweden
Editor, EPJ Web of Conferences vol. 131 (2016)

ISSN: 2100-014X (Electronic Edition)

© EDP Sciences