Proceedings

News

EPJ B Highlight - Separations between earthquakes reveal clear patterns

Smaller tremors often follow initial earthquakes. https://upload.wikimedia.org/wiki pedia/commons/3/35/2017_Chia pas_earthquake_map_-_SSN.svg

A new analysis of real earthquake data shows that the similarity between inter-earthquake times and distances displays a distinct relationship with their separation from an initial earthquake.

When large earthquakes occur, seismologists are well aware that subsequent, smaller tremors are likely to take place afterwards in the surrounding geographical region. So far, however, few studies have explored how the similarity between these inter-earthquake times and distances is related to their separation from initial events. In a new study published in EPJ B, researchers led by Min Lin at the Ocean University of China in Qingdao show for the first time that the two values become increasingly correlated the closer they are in time and space to previous, larger earthquakes.

Read more...

EPJ D Highlight - A better starting point for exploring entanglement

A clearly quantum non-Gaussian curve

Updated mathematical techniques which can distinguish between two types of ‘non-Gaussian curve’ could make it easier for researchers to study the nature of quantum entanglement.

Quantum entanglement is perhaps one of the most intriguing phenomena known to physics. It describes how the fates of multiple particles can become entwined, even when separated by vast distances. Importantly, the probability distributions needed to define the quantum states of these particles deviate from the bell-shaped, or ‘Gaussian’ curves which underly many natural processes. Non-Gaussian curves don’t apply to quantum systems alone, however. They can also be composed of mixtures of regular Gaussian curves, producing difficulties for physicists studying quantum entanglement. In new research published in EPJ D, Shao-Hua Xiang and colleagues at Huaihua University in China propose a solution to this problem. They suggest an updated set of equations which allows physicists to easily check whether or not a non-Gaussian state is genuinely quantum.

Read more...

EPJ B Highlight - Stimulating resonance with two very different forces

Fine-tuning frequencies to achieve resonance.

In some specialised oscillators, two driving forces with significantly different frequencies can work together to make the whole system resonate.

Widely studied in many different fields, ‘nonlinear’ systems can display excessively dramatic responses when the forces which cause them to vibrate are changed. Some of these systems are sensitive to changes in the very parameters which define their driving forces, and can be well described using mathematical equations. These ‘parametric’ oscillators have been widely researched in the past, but so far, few studies have investigated how they will respond to multiple driving forces. In new research published in EPJ B, Dhruba Banerjee and colleagues at Jadavpur University in Kolkata explore this case in detail for the first time. They show that some parametric oscillators can be made to resonate when tuned by a high driving frequency to match a separate, far lower frequency.

Read more...

Miguel A.F. Sanjuán joins the EPJ Scientific Advisory Committee (SAC)

Miguel A.F. Sanjuan

The Scientific Advisory Committee of EPJ is delighted to welcome Professor Miguel A.F. Sanjuán as the new representative for the Spanish Royal Physics Society.

Miguel A.F. Sanjuán is a professor of Physics at the University Rey Juan Carlos (URJC) in Madrid, Spain. He is the director of the Nonlinear Dynamics, Chaos and Complex Systems research group at the URJC. He is a member of the Spanish Royal Academy of Sciences, foreign member of the Lithuanian Academy of Sciences and member of the Academia Europaea.

He is an internationally renowned expert in Nonlinear Dynamics, Chaos and Complex Systems and currently Editor General of the Spanish Royal Physics Society.

His expertise will be highly appreciated for the review of and advice on the publishing strategy of EPJ. His membership of the committee will support the visibility of EPJ in his community.

EPJ D Highlight - Deconstructing Schrödinger’s Cat

Cartoon of Schrödinger’s cat, https://commons.wikimedia.org/wiki/ File:Schrodingers_cat.svg (CC BY-SA)

The French theoretical physicist Franck Laloë presents a modification of Schrödinger’s famous equation that ensures that all measured states are unique, helping to solve the problem that is neatly encompassed in the Schördinger’s cat paradox.

The paradox of Schrödinger’s cat – the feline that is, famously, both alive and dead until its box is opened – is the most widely known example of a recurrent problem in quantum mechanics: its dynamics seems to predict that macroscopic objects (like cats) can, sometimes, exist simultaneously in more than one completely distinct state. Many physicists have tried to solve this paradox over the years, but no approach has been universally accepted. Now, however, theoretical physicist Franck Laloë from Laboratoire Kastler Brossel (ENS-Université PSL) in Paris has proposed a new interpretation that could explain many features of the paradox. He sets out a model of this possible theory in a new paper in EPJ D.

Read more...

EPJ D Highlight - Breaking up amino acids with radiation

Mass spectra of the fragments obtained from glutamine molecules at different radiation doses.

A new study describes how the amino acid, glutamine, is broken up when bombarded with different doses of electrons. This has implications for cancer radiotherapy and understanding the origin of life.

Small organic molecules, including the amino acids that form the ‘building blocks’ of proteins in living cells, fragment to form ions under the impact of high-energy radiation such as electron beams. A new study published in EPJ D has now shown what happens when electrons collide with one amino acid, glutamine. The extent of the damage and the nature of the ions formed are both affected by the energy of the colliding electrons. This work arises from a collaboration between experimental physicists led by Alexander Snegursky at the Institute of Electron Physics, Uzhgorod, Ukraine and theoreticians led by Jelena Tamuliene at Vilnius University, Vilnius, Lithuania.

Read more...

EPJ B Highlight - Ultracold gases in time-dependent magnetic fields

Evolution of the energy spectrum of an ultracold gas under a time-dependent magnetic field. Top left-hand figure (6a), where there is no time dependence, shows the symmetrical ‘Hofstadter’s butterfly’ effect.

The phase transitions of an ultracold gas under a fluctuating magnetic field show interesting patterns, particularly a loss of symmetry in the energy spectrum that is well observed in the disappearance of the ‘Hofstadter’s butterfly’ effect.

It is now technically possible to hold groups of atoms at temperatures that are only a few hundredths of a degree above absolute zero. This so-called ‘ultracold gas’ loaded in an optical lattice is an extremely powerful platform to study quantum mechanical phenomena including phase transitions, due to the excellent control of experimental parameters, such as potential depths, inter-particle interaction strengths and lattice parameters. Sk Noor Nabi from Zhejiang University in Hangzhou, China and colleagues in the Indian Institute of Technology, Guwahati, India, have studied the phase transition between the Mott insulating (MI) and superfluid (SF) states of such a gas in a time-dependent synthetic magnetic field. Their results, published in EPJ B, show that the energy spectrum of the gas loses symmetry in the fluctuating magnetic field. This is observed in the disappearance of the striking ‘Hofstadter’s butterfly’ effect seen in the energy spectrum under a constant magnetic field.

Read more...

Gottfried Strasser joins the EPJ Scientific Advisory Committee (SAC)

Gottfried Strasser

The Scientific Advisory Committee of EPJ is delighted to welcome Professor Gottfried Strasser as the new representative for the Austrian Physical Society.

Gottfried Strasser is professor at the Technische Universität Wien (TU Vienna), heading the Institute of Solid State Electronics and the Center for Micro- and Nanostructures at the TU Wien.

He is an internationally renowned expert in semiconductor physics and devices and president of the Austrian Physical Society.

His expertise will be highly appreciated for the review of and advice on the publishing strategy of EPJ. His membership of the committee will support the visibility of EPJ in his community.

EPJ B Topical Review - Electronic structure and optical properties of semiconductor nanowires polytypes

Advances in the fabrication and characterization of nanowires polytypes have made crystal phase engineering a well-established tool to tailor material properties. In a new review article published in EPJB, Luiz Galvão Tizei and Michele Amato (Université Paris-Saclay, CNRS, LPS, France) describe recent progress in the field, with special focus on the central role that crystal phase has in modulating the electronic and optical properties of nanowires.

Read more...

EPJ ST Highlight - Exploring strangeness and the primordial Universe

Having studied quark-gluon plasma since the late 1970s, Dr Johann Rafelski summarises the evolution in our understanding of the exotic quark signature of this primordial material which once filled the whole Universe.

Physicists believe that in the Universe’s first ten microseconds free quarks and gluons filled all of spacetime, forming a new phase of matter named ‘quark-gluon plasma’ (QGP). Experimental and theoretical work at CERN was instrumental in the discovery of this hot soup of primordial matter, which is recreated today in accelerator-based lab experiments. To discover QGP in such experiments, the observation of exotic ‘strange’ quarks is very important. If QGP is created, strangeness is readily produced through collisions between gluons. In analysis published in EPJ Special Topics, Dr Johann Rafelski from The University of Arizona, United States, also working at CERN, presents how our understanding of this characteristic strangeness production signature has evolved over the span of his long career.

Read more...

This was our first experience of publishing with EPJ Web of Conferences. We contacted the publisher in the middle of September, just one month prior to the Conference, but everything went through smoothly. We have had published MNPS Proceedings with different publishers in the past, and would like to tell that the EPJ Web of Conferences team was probably the best, very quick, helpful and interactive. Typically, we were getting responses from EPJ Web of Conferences team within less than an hour and have had help at every production stage.
We are very thankful to Solange Guenot, Web of Conferences Publishing Editor, and Isabelle Houlbert, Web of Conferences Production Editor, for their support. These ladies are top-level professionals, who made a great contribution to the success of this issue. We are fully satisfied with the publication of the Conference Proceedings and are looking forward to further cooperation. The publication was very fast, easy and of high quality. My colleagues and I strongly recommend EPJ Web of Conferences to anyone, who is interested in quick high-quality publication of conference proceedings.

On behalf of the Organizing and Program Committees and Editorial Team of MNPS-2019, Dr. Alexey B. Nadykto, Moscow State Technological University “STANKIN”, Moscow, Russia. EPJ Web of Conferences vol. 224 (2019)

ISSN: 2100-014X (Electronic Edition)

© EDP Sciences