EPJ A Highlight - Germanium detectors get position sensitive

Interaction positions determined by the pulse shape analysis of AGATA and the AGATA spectrometer at GANIL (picture by P. Lecomte).

High purity germanium detectors have grown into the most popular devices within the field of gamma ray spectroscopy. The sensitive part of these detectors consist of the largest, purest and monocrystalline semi-conductors used on earth. In the past Ge, detectors were famous for their outstanding energy resolution and timing information for electromagnetic radiation, especially in the field of nuclear physics and nuclear astrophysics. Recently the introduction of digital data acquisition systems and the segmentation of the Ge crystals opened up new opportunities. The interaction position of the gamma rays inside the detector volume provides new additional information by means of the pulse shape of the various signals. In this way, the Ge detector becomes a position sensitive device and allows for a novel detection method called gamma-ray tracking.


EPJ D Highlight - Better material insights with gentle e-beams

An early 2-D EELS of nitrogen.

Great potential for a new, more accurate, tool for using electron collisions to probe matter

There are several ways to change a molecule, chemically or physically. One way is to heat it; another is to bombard it with light particles, or photons. A lesser known method relies on electron collision, or e-beam technology, which is becoming increasingly popular in industry. In a review outlining new research avenues based on electron scattering, Michael Allan from the University of Fribourg, Switzerland and colleagues explain the subtle intricacies of the extremely brief electron-molecule encounter, in particular with gentle, i.e., very low energy electrons. In this paper, which was recently published in EPJ D, the authors describe how the use of very low energy electrons and a number of other performance criteria, make the approach with the so-called Fribourg instrument a more appealing candidate than previously available tools used to study electron collisions.


EPJ E Highlight - Versatile method yields synthetic biology building blocks

Fluorescence microscopy image of polymersomes, taken 3 days after production.

New high-throughput method to produce both liposomes and polymersomes on the same microfluidic chip

Synthetic biology involves creating artificial replica that mimic the building blocks of living systems. It aims at recreating biological phenomena in the laboratory following a bottom-up approach. Today scientists routinely create micro-compartments, so called vesicles, such as liposomes and polymersomes. Their membranes can host biochemical processes and are made of self-assembled lipids or a particular type of polymers, called block copolymers, respectively. In a new study, researchers have developed a high-throughput method--based on an approach known as microfluidics--for creating stable vesicles of controlled size. The method is novel in that it works for both liposomes and polymersomes, without having to change the design of the microfluidic device or the combination of liquids. Julien Petit from the Max Planck Institute for Dynamics and Self-Organisation (MPIDS) in Göttingen, Germany and colleagues recently published these findings in EPJ E.


EPJ Plus Highlight - Sweden’s 100% carbon-free emissions challenge

The figure shows the reduced load along with the original nuclear power, the contribution of which is halved. It also shows the increased contribution from wind necessary and that from a backup system.

Replacing nuclear power with wind power doesn't make sense in Sweden, study shows

The Swedish power supply is largely free of carbon emissions. Indeed, it is mainly based on a combination of hydroelectric and nuclear power combined with power exchange with neighbouring Scandinavian countries. A study published in EPJ Plus investigates the possibility of replacing nuclear power with wind power, which is by nature intermittent. According to the study, this, in turn, would finally lead to a reduction in the use of hydroelectricity if the annual consumption remained constant. The authors of the study conclude that a backup system, based on fossil fuel, namely gas, would be required in combination with wind power. In such a scenario, the CO2 emissions would double. Fritz Wagner from the Max Planck Institute for Plasmaphysics, Greifswald, Germany, and Elisabeth Rachlew from the Royal Institute of Technology, Stockholm, Sweden, therefore conclude that it would not be a viable option.


EPJ D Highlight - Revisiting trajectories at the quantum scale

The laws of physics governing the macro scale appear to be an approximation of what is happening at the quantum scale. © hywards / Fotolia

The role of statistics in quantum scale observation explains microscale behaviour

There is a gap in the theory explaining what is happening at the macroscopic scale, in the realm of our everyday lives, and at the quantum level, at microscopic scale. In this paper published in EPJ D, Holger Hofmann from the Graduate School of Advanced Sciences of Matter at Hiroshima University, Japan, reveals that the assumption that quantum particles move because they follow a precise trajectory over time has to be called into question. Instead, he claims that the notion of trajectory is a dogmatic bias inherited from our interpretation of everyday experience at the macroscopic scale. The paper shows that trajectories only emerge at the macroscopic limit, as we can neglect the complex statistics of quantum correlations in cases of low precision.


EPJ A Highlight - New approach to nuclear structure, freely available

Extraction of the excitation energy of the ½- state of lithium ( 7Li ) using the dependence on the harmonic oscillator frequency ω.

Use of relative coordinates in nuclear structure calculations helps reduce the amount of computational power required

The atomic nucleus is highly complex. This complexity partly stems from the nuclear interactions in atomic nuclei, which induce strong correlations between the elementary particles, or nucleons, that constitute the heart of the atom. The trouble is that understanding this complexity often requires a tremendous amount of computational power. In a new study published in EPJ A, Susanna Liebig from Forschungszentrum Jülich, Germany, and colleagues propose a new approach to nuclear structure calculations. The results are freely available to the nuclear physicists’ community so that other groups can perform their own nuclear structure calculations, even if they have only limited computational resources.


EPJ E Colloquium: nanoparticles, nanorods and nanosheets at fluid interfaces

pH-induced, SWCNT segregation transition

In this EPJ E Review, Toor, Feng and Russel present many examples of self-assembly of nanoscale materials (both synthetic and biological) such as nanoparticles, nanorods and nanosheets at liquid/liquid interfaces. For biological nanoparticles, the nanoparticle assembly at fluid interfaces provide a simple route for directing nanoparticles into 2-D or 3-D constructs with hierarchical ordering.

Read more... Mobile App available

EPJ Mobile App

EDP Sciences launches mobile app. Available and free to download from the iTunes App Store and from Google Play (for Android devices).

EPJ Mobile App Screenshot

Keep up with the latest research in the physical sciences with the EPJ Journals app. The app offers a news sections with lay summaries highlighting the findings reported in selected research papers, updates on the journals contents as soon as they are published, including research papers, reviews, colloquia and proceedings papers from all European Physical Journals ( You can search to find specific papers, navigate the journals contents by issue and find out about active calls for papers.

Note: if you are accessing through a mobile device connected through your institutional VPN, you will be able to access the full text PDFs if your institution has a subscription to the journals. Some of the EPJ journals are published in Open Access so they are fully accessible to anyone, from anywhere.

Download App now!

Google play EPJ Apple store EPJ

EPJ A Managing Editor Reviews Ulf-G. Meißner receives 2016 Lise Meitner Prize

Prof. Ulf-G.Meißner

The Nuclear Physics Division of the EPS awards the prestigious Lise Meitner Prize every alternate year to one or several individuals for outstanding work in the fields of experimental, theoretical or applied nuclear science. Professor Ulf-G.Meißner, Universität Bonn and Forschungszentrum Jülich, Germany, Managing Editor for Reviews and former Editor-in-Chief of EPJ A, receives the 2016 Lise Meitner Prize “for his developments and applications of effective field theories in hadron and nuclear physics, that allowed for systematic and precise investigations of the structure and dynamics of nucleons and nuclei based on Quantum Chromodynamics”.


EPJ E Highlight - Travelling wave drives magnetic particles

Optical microscope images separated by 6.63 s showing the formation of chains between only the large particles starting from an initially random mixture of two particles sizes.

New method for selectively controlling the motion of multiple sized microspheres suspended in water

As our technology downsizes, scientists often operate in microscopic-scale jungles, where modern-day explorers develop new methods for transporting microscopic objects of different sizes across non uniform environments, without losing them. Now, Pietro Tierno and Arthur Straube from the University of Barcelona, Spain, have developed a new method for selectively controlling, via a change in magnetic field, the aggregation or disaggregation of magnetically interacting particles of two distinct sizes in suspension in a liquid. Previous studies only focused on one particle size. These results, just published in EPJ E, show that it is possible to build long chains of large particles suspended in a liquid, forming channels that drive the small particles to move along. This could be helpful, for example, when sorting magnetic beads by size, separating biological or chemical entities in lab-on-a-chip devices or transporting biological species to analyse them.


I have looked at the online proceedings of ISMD14 that you have prepared. I must definitely say that I am even more than fully satisfied with them! This convinces me even more that online proceedings are nowadays much more useful than traditional paper printed copies. They are much more accessible, provide quick access to references and allow readers to easily use the results in terms of plots and tables (...). I have already suggested your online journal to a colleague of mine who has to publish the proceedings of another conference and I will certainly take the opportunity to suggest your services to many more colleagues.

I really appreciated the high level of professionalism of the EDP Sciences staff and I will definitely recommend your online journal to my colleagues.

Paolo Giacomelli and Fabrizio Fabbri, INFN Bologna, Italy
Co-Editors, EPJ Web of Conferences vol. 90, 2015

ISSN: 2100-014X (Electronic Edition)

© EDP Sciences

Conference announcements


Magnetic Island, Queensland, Australia, 22-24 July 2017