EPJE news: Julia Yeomans awarded the EPJE P.-G. De Gennes lecture prize

Julia Mary Yeomans.

The 2013 edition of the EPJE Pierre Gilles De Gennes prize has been awarded by the EPJE editors to Professor Julia Yeomans of the University of Oxford, UK. This initiative of the European Physical Journal E - Soft Matter and Biological Physics takes the name from the illustrious Nobel laureate who founded the journal.

Professor Yeomans has been nominated for her profound contribution to the study of the dynamical behaviour of complex and active liquids in confined geometries. She is an expert in theoretical and computational physics, particularly statistical physics, hydrodynamics, soft condensed matter and biological physics. Among her current research interests are microswimmers, active systems, liquid crystals and the interactions of fluids with structured surfaces.


EPJ D Highlight - Novel beams made of twisted atoms

‘Snapshot’ of atomic Bessel beam profiles.

Scientists can now theoretically construct atomic beams of a particular kind, opening the door for applications in fields like quantum communication.

Physicists have, for the first time, now built a theoretical construct of beams made of twisted atoms. These findings are about to be published in EPJ D by Armen Hayrapetyan and colleagues at Ruprecht-Karls-University Heidelberg in Germany. These so-called atomic Bessel beams can, in principle, have potential applications in quantum communication as well as in atomic and nuclear processes.


EPJ A Highlight - Dissecting Deuteron Compton Scattering I: The Observables with Polarised Initial States

Sensitivity of a double-polarisation-asymmetry observable to the E1-M2 spin polarisability.

The electromagnetic polarisabilities of the nucleons characterise their responses to external fields. The simplest are the electric and magnetic polarisabilities that describe the induced dipole moments. For spin-1/2 particles there are also four spin polarisabilities, analogous to rotations of the polarisation of light by optically active media. The best experimental window on them is Compton scattering of photons, which has provided good determinations of the electric and magnetic polarisabilities of the proton. Future experiments with polarised protons will give access to its spin polarisabilities. In contrast, much less is known of about the neutron since it does not exist as a stable target. Nonetheless, its properties can be obtained from Compton scattering on light nuclei, most notably the deuteron -- a weakly bound proton and neutron. A new generation of experiments is planned to provide beams of polarised photons on targets of polarised deuterons. If the spins of the final particles are not observed, there are 18 independent observables. This work provides, for the first time, the complete set of these, which will be needed for the experimental analyses. More importantly, it also examines their sensitivities to the various polarisabilities, which will be crucial for the design of the experiments.


EPJ B Highlight - Studying emotions causing opinions to change

Example of evolution of agent opinions.

Physicists can use their tools to help understand how, in real life, opinions form and change by modelling the complex interactions between information and emotion

Social phenomena fascinate with their complexity, but are not easily understood. Pawel Sobkowicz, an independent researcher based in Warsaw, Poland, has developed a model to study the dynamic of standard people, called ‘agents’, and their response to a given piece of information, depending on their emotional state. In a study just published in EPJ B, the author shows that opinion dynamics differ depending on whether the agent is agitated or not.


EPJ E Highlight - Protein surfaces defects as drug targets

The average mobility of the water molecules. Figure 2 from Ariel Fernandez (2010), Transformative concepts for drug design: Target Wrapping, Springer-Verlag, Berlin.

Drug designers now have a new way of designing drug candidates suitable for dislodging unstable water molecules located in the defects at the surface of target proteins

New research shows a physical characterisation of the interface of the body’s proteins with water. Identifying the locations where is it easiest to remove water from the interface of target proteins could constitute a novel drug design strategy. The candidate drugs would need to be engineered to bind at the site of the protein where interfacial water is most easily dislodged. These findings, based on the work of María Belén Sierra from the National University of the South, in Bahia Blanca, Argentina and colleagues, recently published in EPJ E.


EPJ E Highlight - Heterogeneous nanoblocks give polymers an edge

Examples of different nanoscale patterns that block copolymers can adopt.

Study uncovers the effects of size variation in nanoscale blocks used in polymer mixes on their underlying architecture and inherent characteristics

Building structures by mixing lego bricks of two different sizes is child’s play. However, studying polymers endowed with an alternating nanostructure made of heterogeneous blocks is anything but straightforward. Theoretical physicist Mark Matsen, based at the University of Reading, UK, studies polymer mixes consisting of two-fold (AB) and three-fold (BAB) combinations of two types of nanoscale blocks. He has shown, in a study published in EPJ E, that the underlying heterogeneity of the blocks can cause polymers to switch to different nanoscale patterns and therefore display different properties. Numerous applications based on etching patterns on substrates, such as electronics, computer chips, and membranes endowed with a specific function, can benefit from such research.


EPJ E Highlight - Cells move as concentration shifts

Schematic representation of a top-view of the cell containing the colony.

Sheets of biological cells move along the organs they cover by altering the external concentrations of specific molecules, thanks to an absorption mechanism on the cells’ surface

What do wound healing, cancer metastasis, and bacteria colonies have in common? They all involve the collective displacement of biological cells. New research sheds some new light on the physical mechanisms provoking the displacement of a sheet of cell, known as an epithelium. It typically covers our organs including the stomach and intestine, as well as our epidermis. In a paper which appeared in EPJ E, Martine Ben Amar from Pierre and Marie Curie University in Paris explains the importance of understanding the displacement of the epithelium as a means of influencing the biological process involved in healing. And, ultimately, of helping to minimise scars.


EPJ C Highlight - Removing complexity layers from the universe’s creation

A schematic depiction of the combined motion that a Brownian particle executes in a background polycrystalline space. © The authors

Understanding complexity in the early universe may require combining simpler models to interpret cosmological observations

Complicated statistical behaviour observed in complex systems such as early universe can often be understood if it is broken down into simpler ones. Two physicists, Petr Jizba (currently affiliated with the Czech Technical University in Prague), and Fabio Scardigli (now working at Kyoto University in Japan), have just published results in EPJ C pertaining to theoretical predictions of such cosmological systems’ dynamics.


EPJ D Highlight - The key to ion beams’ polarisability

Ion beams are used as a source for dopant atoms in semiconductor manufacturing. © Hornpipe, Dreamstime Stock Photos & Stock Free Images

Polarisability for series of multi-electron ions is now available

Polarisability determines the force with which an inhomogeneous external electric field acts on the ions of an ion beam. However, it can be quite tricky to obtain accurate values for this force. Now, two German theoretical chemists, Volker Koch from Bielefeld University and Dirk Andrae from the Free University Berlin, have devised formulas providing the polarisability of atomic ions as a function of their total charge number. Their findings, about to be published in EPJ D, have implications for many applications, ranging from the use of ion beams for research purposes or as a source for dopant atoms in semiconductor manufacturing to the modelling of planetary and stellar atmospheres.


EPJ B Highlight - When diffusion depends on chronology

Motorways are an example of nodes connected by edges studied as complex networks.
© Highways Agency

Study shows that the order of events taking place in complex networks may dramatically alter the way diffusion occurs

The Internet, motorways and other transport systems, and many social and biological systems are composed of nodes connected by edges. They can therefore be represented as networks. Scientists studying diffusion over such networks over time have now identified the temporal characteristics that affect their diffusion pathways. In a paper just published in EPJ B, Renaud Lambiotte and Lionel Tabourier from the University of Namur, Belgium, together with Jean-Charles Delvenne from the Catholic University of Louvain, Belgium, show that one key factor that can dramatically change a diffusion process is the order in which events take place in complex networks.


This was our first experience of publishing with EPJ Web of Conferences. We contacted the publisher in the middle of September, just one month prior to the Conference, but everything went through smoothly. We have had published MNPS Proceedings with different publishers in the past, and would like to tell that the EPJ Web of Conferences team was probably the best, very quick, helpful and interactive. Typically, we were getting responses from EPJ Web of Conferences team within less than an hour and have had help at every production stage.
We are very thankful to Solange Guenot, Web of Conferences Publishing Editor, and Isabelle Houlbert, Web of Conferences Production Editor, for their support. These ladies are top-level professionals, who made a great contribution to the success of this issue. We are fully satisfied with the publication of the Conference Proceedings and are looking forward to further cooperation. The publication was very fast, easy and of high quality. My colleagues and I strongly recommend EPJ Web of Conferences to anyone, who is interested in quick high-quality publication of conference proceedings.

On behalf of the Organizing and Program Committees and Editorial Team of MNPS-2019, Dr. Alexey B. Nadykto, Moscow State Technological University “STANKIN”, Moscow, Russia. EPJ Web of Conferences vol. 224 (2019)

ISSN: 2100-014X (Electronic Edition)

© EDP Sciences